Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(20)2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37895689

RESUMO

Solid activators based on waste glass for the manufacture of one-part alkali-activated fly ash/red mud materials were synthesized, characterized, and tested in this work. The synthesis was carried out via alkaline fusion with sodium hydroxide at different reaction temperatures and at different sodium hydroxide/waste glass mass ratios. The results showed that the reaction temperature decisively influences the properties of the obtained solid activators. Thus, the best results regarding the water solubility of solid activators were obtained for the synthesis temperature of 600 °C, regardless of the sodium hydroxide/waste glass mass ratio. Also, the use of these assortments of solid activators led to obtaining the best compressive strength of one-part alkali-activated fly ash/red mud materials. The best results were obtained for the solid activator synthesized at a temperature of 600 °C and a sodium hydroxide/glass waste mass ratio of two.

2.
Int J Mol Sci ; 24(14)2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37511630

RESUMO

Nanocellulose (NC) is a valuable material in tissue engineering, wound dressing, and drug delivery, but its lack of antimicrobial activity is a major drawback for these applications. In this work, basil ethanolic extract (BE) and basil seed mucilage (BSM) were used to endow nanocellulose with antibacterial activity. NC/BE and NC/BE/BSM sponges were obtained from nanocellulose suspensions and different amounts of BE and BSM after freeze-drying. Regardless of the BE or BSM content, the sponges started to decompose at a lower temperature due to the presence of highly volatile active compounds in BE. A SEM investigation revealed an opened-cell structure and nanofibrillar morphology for all the sponges, while highly impregnated nanofibers were observed by SEM in NC/BE sponges with higher amounts of BE. A quantitative evaluation of the porous morphology by microcomputer tomography showed that the open porosity of the sponges varied between 70% and 82%, being lower in the sponges with higher BE/BSM content due to the impregnation of cellulose nanofibers with BE/BSM, which led to smaller pores. The addition of BE increased the specific compression strength of the NC/BE sponges, with a higher amount of BE having a stronger effect. A slight inhibition of S. aureus growth was observed in the NC/BE sponges with a higher amount of BE, and no effect was observed in the unmodified NC. In addition, the NC/BE sponge with the highest amount of BE and the best antibacterial effect in the series showed no cytotoxic effect and did not interfere with the normal development of the L929 cell line, similar to the unmodified NC. This work uses a simple, straightforward method to obtain highly porous nanocellulose structures containing antibacterial basil extract for use in biomedical applications.


Assuntos
Ocimum basilicum , Staphylococcus aureus , Antibacterianos/farmacologia , Antibacterianos/química , Ocimum basilicum/química , Extratos Vegetais/farmacologia
3.
Heliyon ; 9(12): e23097, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38205075

RESUMO

The aim of this study involved the synthesis and characterization of polyurethane (PUR) foams obtained from poly(ethylene terephthalate) (PET) depolymerization products and two types of filling agents, namely fly ash and glass waste. The depolymerized PET-based products were obtained by zinc acetate-catalyzed glycolysis process in diethylene glycol (DEG) as a co-reactant. The resulting glycolysis products were contacted with methylene diphenyl diisocyanate, castor oil, and reinforcing agents. The resulting PUR specimens were characterized by Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), EDX mapping, mechanical tests, and thermal analysis. The analysis confirmed that the best mechanical performances were registered by the specimens with the lowest concentration of filling agent, while the highest thermal resistance was achieved by the PUR foams with the highest concentration of reinforcing agent.

4.
Polymers (Basel) ; 14(24)2022 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-36559911

RESUMO

The aim of this study was to obtain biocomposites consisting of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), bacterial cellulose (BC) and α-tocopherol by a melt processing technique for potential use in biomedical applications. The melt processing and roughness of biocomposites were evaluated and compared to sample without BC. The degradation rate of PHBV/BC biocomposites was measured in phosphate buffer saline (PBS) by determining the mass variation and evidencing of thermal and structural changes by differential scanning calorimetry (DSC) and attenuated total reflectance-Fourier transformed infrared spectrometry (ATR-FTIR). The cell viability, cell morphology, cell cycle distribution and total collagen content were investigated on murine NCTC fibroblasts. Overall, the adding of BC to polyester matrix led to an adequate melt processing of biocomposites and increased surface roughness and cytocompatibility, allowing the cells to secrete the extracellular matrix (collagen) and stimulate cell proliferation. Results showed that the PHBV/BC biocomposites were favorable for long-term degradation and could be used for the design of medical devices with controlled degradability.

5.
Polymers (Basel) ; 13(22)2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34833269

RESUMO

This work proposes a new method for obtaining poly(3-hydroxybutyrate) (PHB)/microfibrillated cellulose (MC) composites with more balanced properties intended for the substitution of petroleum-based polymers in packaging and engineering applications. To achieve this, the MC surface was adjusted by a new chemical route to enhance its compatibility with the PHB matrix: (i) creating active sites on the surface of MC with γ-methacryloxypropyltrimethoxysilane (SIMA) or vinyltriethoxysilane (SIV), followed by (ii) the graft polymerization of methacrylic acid (MA). The high efficiency of the SIMA-MA treatment and the lower efficiency in the case of SIV-MA were proven by the changes observed in the Fourier transform infrared FTIR spectra of celluloses. All modified celluloses and the PHB composites containing them showed good thermal stability close to the processing temperature of PHB. SIMA-modified celluloses acted as nucleating agents in PHB, increasing its crystallinity and favoring the formation of smaller spherulites. A uniform dispersion of SIMA-modified celluloses in PHB as a result of the good compatibility between the two phases was observed by scanning electron microscopy and many agglomerations of fibers in the composite with unmodified MC. The dual role of SIMA-MA treatment, as both compatibilizer and plasticizer, was pointed out by mechanical and rheological measurements. This new method to modify MC and obtain PHB/MC composites with more balanced stiffness-toughness properties could be a solution to the high brittleness and poor processability of PHB-based materials.

6.
Drug Deliv ; 28(1): 1932-1950, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34550033

RESUMO

Dressing biomaterials play a key role in wound management keeping a moisture medium and protecting against external factors. Natural and synthetic materials could be used as dressings where chitosan and bacterial cellulose is one of the most important solutions. These biopolymers have been used for wound dressing based on their non-toxic, biodegradable, and biocompatible features. In this study, biocomposites based on bacterial cellulose and chitosan membranes tailored with antimicrobial loaded poly(N-isopropylacrylamide)/polyvinyl alcohol nanoparticles were prepared. Core-shell polymeric nanoparticles, bacterial cellulose/chitosan membranes, and biocomposites were independently loaded with silver sulfadiazine, a well-known sulfonamide antibacterial agent used in the therapy of mild-to-moderate infections for sensitive organisms. The chemistry, structure, morphology, and size distribution were investigated by Fourier transformed infrared spectroscopy (FTIR-ATR), RAMAN spectroscopy, Scanning electron (SEM) and Transmission electron microscopy (TEM), and Dynamic light scattering (DLS). In vitro release behaviors of silver sulfadiazine from polymeric nanoparticles and biocomposites were investigated. The biological investigations revealed good biocompatibility of both the nanoparticles and the biocomposites in terms of human dermal fibroblasts viability and proliferation potential. Finally, the drug-loaded polymeric biomaterials showed promising characteristics, proving their high potential as an alternative support to develop a biocompatible and antibacterial wound dressing.


Assuntos
Anti-Infecciosos Locais/administração & dosagem , Bandagens , Nanopartículas/química , Sulfadiazina de Prata/administração & dosagem , Anti-Infecciosos Locais/farmacologia , Técnicas de Cultura de Células , Sobrevivência Celular/efeitos dos fármacos , Celulose/química , Química Farmacêutica/métodos , Quitosana/química , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Humanos , Tamanho da Partícula , Reologia , Sulfadiazina de Prata/farmacologia , Propriedades de Superfície , Cicatrização/efeitos dos fármacos
7.
Materials (Basel) ; 13(20)2020 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-33050441

RESUMO

Nanocomposite materials based on poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBHV) and modified mineral clay layered double hydroxides (LDH-SDS) were explored as novel nanostructured materials for potential tissue engineering applications. The mineral clay inorganic phase was modified with an anionic long-chain structure of carbon atoms, such as sodium dodecyl sulfate, in order to increase the compatibility between the two phases. The melt intercalation method used for nanocomposite fabrication ensures a good dispersion of the modified LDH-SDS within the polymer matrix without using a toxic solvent (chloroform). The nanocomposites were found to have an intercalated/exfoliated structure with an enhanced Young modulus and increased stiffness. This could allow them to be considered for autologous stem cells dressings in the view of efficient wound healing applications.

8.
Mater Sci Eng C Mater Biol Appl ; 110: 110740, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32204048

RESUMO

Three-dimensional (3D) porous structures with controlled pore size and interconnected pores, good mechanical properties and biocompatibility are of great interest for tissue engineering. In this work we propose a new strategy to obtain highly porous 3D structures with improved properties using bacterial cellulose (BC) and eco-friendly additives and processes. Glucose, vanillin and citric acid were used as non-toxic and cheap cross-linkers and γ-aminopropyltriethoxysilane was used to partially replace the surface OH groups of cellulose with amino groups. The efficiency of grafting and cross-linking reactions was confirmed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The morphological investigation of BC sponges revealed a multi-hierarchical organization after functionalization and cross-linking. Micro-computed tomography analysis showed 80-90% open porosity in modified BC sponges. The thermal and mechanical properties of the sponges were influenced by the cross-linker type and concentration. The strength-to-weight ratio of BC sponges cross-linked with glucose and citric acid was 150% and 120% higher compared to that of unmodified BC sponge. In vitro assays revealed that the modified BC sponges are non-cytotoxic and do not trigger an inflammatory response in macrophages. This study provides a simple and green method to obtain highly porous cellulose sponges with hierarchical design, biocompatibility and good mechanical properties.


Assuntos
Bactérias/química , Celulose/química , Reagentes de Ligações Cruzadas/química , Teste de Materiais , Engenharia Tecidual , Alicerces Teciduais/química , Animais , Linhagem Celular , Camundongos
9.
Forensic Sci Int ; 263: 204-210, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27139038

RESUMO

Ballistic gelatin is the simulant of the human body during field tests in forensics and other related fields, due to its physical and mechanical similarities to human trunk and organs. Since the ballistic gelatin used in present has important issues to overcome, an alternative approach is the use of gelatin-polymer composites, where a key factor is the insertion of biocompatible materials, which replicate accurately the human tissues. In order to be able to obtain an improved material in terms of mechanical performances by an easy industrial-scale technology, before the verification of the ballistic parameters by shooting in agreement with military standards, one of the best and cheapest solutions is to perform a thorough check of their rheological properties, in standard conditions.


Assuntos
Balística Forense , Gelatina , Modelos Biológicos , Reologia , Humanos , Teste de Materiais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...